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1 Introduction

Many portfolio managers measure performance with reference to a benchmark.
The di�erence in return between a portfolio and its benchmark is the active
return of the portfolio. Portfolio managers and their clients want to know
what caused this active return. Performance attribution decomposes the ac-
tive return. The two most common approaches are the Brinson-Hood-Beebower
(hereafter referred to as the Brinson model) and a regression-based analysis.1

Portfolio managers use di�erent variations of the two models to assess the
performance of their portfolios. Managers of �xed income portfolios include
yield-curve movements in the model Lord (1997) while equity managers who
focus on the e�ect of currency movements use variations of the Brinson model
to incorporate �local risk premium� Singer and Karnosky (1995). In contrast,
in this paper we focus on attribution models for equity portfolios without con-
sidering any currency e�ect.

The pa package provides tools for conducting both methods for equity port-
folios. The Brinson model takes an ANOVA-type approach and decomposes the
active return of any portfolio into asset allocation, stock selection, and interac-
tion e�ects. The regression-based analysis utilizes estimated coe�cients from
a linear model to attribute active return to di�erent factors. After describing
the Brinson and regression approaches and demonstrating their use via the pa

package, we show that the Brinson model is just a special case of the regression
approach.

2 Data

We demonstrate the use of the pa package with a series of examples based on
real-world data sets from MSCI Barra's Global Equity Model II(GEM2).2 MSCI
Barra is a leading provider of investment decision support tools to investment
institutions worldwide. According to the company:

GEM2 is the latest Barra global multi-factor equity model. It provides

a foundation for investment decision support tools via a broad range of

*yang.lu2014@gmail.com
�dave.kane@gmail.com
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2See www.msci.com and Menchero et al. (2008) for more information.
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insightful analytics for developed and emerging market portfolios. The

latest model version provides:

� Improved accuracy of risk forecasts and increased explanatory power.

� An intuitive structure that accommodates di�erent investment pro-

cesses in developed vs. emerging markets.

� Greater responsiveness to market dynamics.

� Comprehensive market coverage.

GEM2 leverages the decades of experience that MSCI Barra has in devel-

oping and maintaining global equity multi-factor models and indices, and

o�ers important enhancements over GEM, which is utilized by hundreds

of institutional fund managers worldwide.

The original data set contains selected attributes such as industry, size, coun-
try, and various style factors for a universe of approximately 48,000 securities
on a monthly basis.

For illustrative purposes, this article uses three modi�ed versions of the
original data set, containing 3000 securities, namely year, quarter, and jan.
The data frame, quarter, is a subset of year, containing the data of the �rst
quarter. The data frame, jan, is a subset of quarter with the data from
January, 2010.

> data(year)

> names(year)

[1] "barrid" "name" "return"

[4] "date" "sector" "momentum"

[7] "value" "size" "growth"

[10] "cap.usd" "yield" "country"

[13] "currency" "portfolio" "benchmark"

� barrid: security identi�er by Barra.

� name: name of a security.

� return: monthly total return in trading currency.

� date: the starting date of the month to which the data belong.

� sector: consolidated sector categories based on the GICS.3

� momentum: capture sustained relative performance.

� value: capture the extent to which a stock is priced inexpensively in the
market.

� size: di�erentiate between large and small cap companies.

� growth: capture stock's growth prospects.

� cap.usd: capitalization in model base currency USD.

� yield: dividend of a security.

3Global Industry Classi�cation Standard
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� country: the country in which the company is traded.

� currency: currency of exposure.

� portfolio: top 200 securities based on value scores in January are selected
as portfolio holdings and are held through December 2010. This is to
avoid the complexity of trading in the analyses.

� benchmark: top 1000 securities based on size each month. The benchmark
is cap-weighted.

Here is a sample of rows and columns from the data frame year:

name

44557 BLUE STAR OPPORTUNITIES CORP

25345 SEADRILL

264017 BUXLY PAINTS (PKR10)

380927 CDN IMPERIAL BK OF COMMERCE

388340 CDN IMPERIAL BK OF COMMERCE

return date sector size

44557 0.00000 2010-01-01 Energy 0.00

25345 -0.07905 2010-01-01 Energy -0.27

264017 -0.01754 2010-05-01 Materials 0.00

380927 0.02613 2010-08-01 Financials 0.52

388340 -0.00079 2010-11-01 Financials 0.55

country portfolio benchmark

44557 USA 0.000 0.000000

25345 NOR 0.000 0.000427

264017 PAK 0.005 0.000000

380927 CAN 0.005 0.000012

388340 CAN 0.005 0.000012

The portfolio has 200 equal-weighted holdings. The row for Canadian Im-
perial Bank of Commerce indicates that it is one of the 200 portfolio holdings
with a weight of 0.5% in 2010. Its return was 2.61% in August, and almost �at
in November.

3 The Brinson Model

3.1 Single-Period Brinson Model

Consider an equity portfolio manager who uses the S&P 500 as the benchmark.
In a given month, she outperformed the S&P by 3%. Part of that performance
was due to the fact that she allocated more weight of the portfolio to certain
sectors that performed well. Call this the allocation e�ect. Part of her outper-
formance was due to the fact that some of the stocks she selected did better than
their sector as a whole. Call this the selection e�ect. The residual can then be
attributed to an interaction between allocation and selection � the interaction

e�ect. The Brinson model provides mathematical de�nitions for these terms
and methods for calculating them.

The example above uses sector as the classi�cation scheme when calculating
the allocation e�ect. But the same approach can work with any other variable
which places each security into one, and only one, discrete category: country,

3



industry, and so on. In fact, a similar approach can work with continuous
variables that are split into discrete ranges: the highest quintile of market cap,
the second highest quintile and so forth. For generality, we will use the term
�category� to describe any classi�cation scheme which places each security in
one, and only one, category.

Notations:

� wB
i is the weight of security i in the benchmark.

� wP
i is the weight of security i in the portfolio.

� WB
j is the weight of category j in the benchmark. WB

j =
∑

wB
i , i ∈ j.

� WP
j is the weight of a category j in the portfolio. WP

j =
∑

wP
i , i ∈ j.

� The sum of the weight wB
i , w

P
i , W

B
j , and WP

j is 1, respectively.

� ri is the return of security i.

� RB
j is the return of a category j in the benchmark. RB

j =
∑

wB
i ri, i ∈ j.

� RP
j is the return of a category j in the portfolio. RP

j =
∑

wP
i ri, i ∈ j.

The return of a portfolio, RP , can be calculated in two ways:

� On an individual security level by summing over n stocks: RP =
n∑

i=1

wP
i ri.

� On a category level by summing over N categories: RP =
N∑
j=1

WP
j RP

j .

Similar de�nitions apply to the return of the benchmark, RB ,

� RB =
n∑

i=1

wB
i ri.

� RB =
N∑
j=1

WB
j RB

j .

Active return of a portfolio, Ractive, is a performance measure of a portfolio
relative to its benchmark. The two conventional measures of active return are
arithmetic and geometric. The pa package implements the arithmetic measure
of the active return for a single-period Brinson model because an arithmetic
di�erence is more intuitive than a ratio over a single period.

The arithmetic active return of a portfolio, Ractive, is the portfolio return
RP less the benchmark return RB :

Ractive = RP −RB .

Since the category allocation of the portfolio is generally di�erent from that
of the benchmark, allocation plays a role in the active return, Ractive. The same
applies to stock selection where assuming that the portfolio has the exact same
categorical exposures as the benchmark does, equities within each category are
di�erent. This contributes to Ractive as well. Allocation e�ect Rallocation and
selection e�ect Rselection over N categories are de�ned as:
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Rallocation =
N∑
j=1

WP
j RB

j −
N∑
j=1

WB
j RB

j ,

Rselection =
N∑
j=1

WB
j RP

j −
N∑
j=1

WB
j RB

j .

The intuition behind the allocation e�ect is that a portfolio would produce
di�erent returns with di�erent allocation schemes (WP

j vs. WB
j ) while having

the same stock selection and thus the same return (RB
j ) for each category. The

di�erence between the two returns, caused by the allocation scheme, is called the
allocation e�ect (Rallocation). Similarly, two di�erent returns can be produced
when two portfolios have the same allocation (WB

j ) yet dissimilar returns due to

di�erences in stock selection within each category (Rp
j vs. RB

j ). This di�erence
is the selection e�ect (Rselection).

Interaction e�ect, Rinteraction, is the result of subtracting return due to
allocation Rallocation and return due to selection Rselection from the active return
Ractive:

Rinteraction = Ractive −Rallocation −Rselection.

3.2 Weakness of the Brinson Model

The Brinson model allows portfolio managers to analyze the relative return of
a portfolio using any attribute of a security, such as country or sector. One
weakness of the model is to expand the analysis beyond two categories.4 As
the number of categories increases, this procedure is subject to the curse of

dimensionality.
Suppose an equity portfolio manager wants to �nd out the contributions of

any two categories (for instance, country and sector) to her portfolio based on
the Brinson model. She can decompose the active return into three broad terms
� Rallocation, Rselection, and Rinteraction. The allocation e�ect can be further
split into country allocation e�ect, sector allocation e�ect and the product of
country and sector allocation e�ects:

Rallocation =
Rcountry allocation +Rsector allocation +Rcountry allocationRsector allocation.

Speci�cally, the country allocation e�ect is the return caused by the dif-
ference between the actual country allocation and the benchmark country al-
location while assuming the same benchmark return within each level of the
category country, that is,

Rcountry allocation =
N∑
j=1

CW
P
j CR

B
j −

N∑
j=1

CW
B
j CR

B
j ,

where

� CW
P
j and CW

B
j refer to the weight of each country j (NC countries in

total) in the portfolio and that in the benchmark, respectively.

4Brinson et al. (1991) proposed a framework to include two variables in the Brinson anal-
ysis.
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� CR
B
j refers to the benchmark return of any country j.

Similarly, the sector allocation e�ect is the di�erence in return between a
portfolio's sector allocation and the benchmark's sector allocation while having
the same benchmark returns:

Rsector allocation =
N∑
j=1

SW
P
j SR

B
j −

N∑
j=1

SW
B
j SR

B
j ,

SW
P
j and SW

B
j refer to the weight of the sector j in the portfolio and the weight

of the sector j in the benchmark, respectively. SR
B
j is the benchmark return of

any given sector j of all NS sectors.
In the same vein, the return as a result of the selection e�ect Rselection is

the sum of country selection e�ect, sector selection e�ect, and the product of
country and sector selection e�ects:

Rselection = Rcountry selection +Rsector selection

+Rcountry selection ∗Rsector selection

=

N∑
j=1

CW
B
j CR

P
j −

N∑
j=1

CW
B
j CR

B
j

+

N∑
j=1

SW
B
j SR

P
j −

N∑
j=1

SW
B
j SR

B
j

+ (

N∑
j=1

CW
B
j CR

P
j −

N∑
j=1

CW
B
j CR

B
j )

∗ (

N∑
j=1

SW
B
j SR

P
j −

N∑
j=1

SW
B
j SR

B
j ).

The interaction e�ect, Rinteraction, includes the interaction between country
allocation and sector selection and that between country selection and sector
allocation.

Therefore, in the case of Q categories where Q > 1, the Brinson model
becomes very complex (assume Q ≥ 3):

Rallocation =

Q∑
j=1

Rallocationj
+

Q∑
j=1

Q∑
k=1

Rallocationj
Rallocationk

+

Q∑
j=1

Q∑
k=1

Q∑
p=1

Rallocationj
Rallocationk

Rallocationp

= . . . ,

Rselection =

Q∑
j=1

Rselectionj
+

Q∑
j=1

Q∑
k=1

Rselectionj
Rselectionk

+

Q∑
j=1

Q∑
k=1

Q∑
p=1

RselectionjRselectionk
Rselectionp

= . . . ,
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where Rallocationj
is the allocation e�ect of any given category j, j ∈ Q and

Rselectionj
is the selection e�ect of any given category j, j ∈ Q. i, j, k have

di�erent values.
As the number of categories grows, the numbers of terms for the allocation

and the selection e�ects grow exponentially. Q categories will result in 2Q − 1
terms for each of the allocation and selection e�ect.

Due to the interaction between allocation and selection of each of the Q
categories (it could be interaction between 2, 3 or even all Q categories), the
number of terms included in the interaction e�ect grows exponentially to take
into all the interaction e�ects among all categories.

Rinteraction =

Q∑
j=1

Q∑
k=1

Rallocationj
Rselectionk

+

Q∑
j=1

Q∑
k=1

Q∑
p=1

Rallocationj
Rselectionk

Rallocationp

+ . . . .

Q categories has 22n − 2n+1 + 1 terms of interaction e�ects.
For instance, when there are 3 categories, the allocation e�ect and the selec-

tion e�ect each have 23−1 = 7 terms. The interaction e�ect has 26−24+1 = 49
terms. When there are 4 categories, 24 − 1 = 15 terms have to be estimated for
the allocation e�ect as well as the selection e�ect, respectively. 28−25+1 = 225
terms have to be calculated for the interaction e�ect of 4 categories. This poses
a signi�cant computational challenge when a portfolio manager performs a mul-
tivariate Brinson analysis.

To some extent, the regression-based model detailed later solves the problem
of multivariate attribution.

3.3 Single-Period Brinson Tools

Brinson analysis is run by calling the function brinson to produce an object of
class brinson. Below we show the tools provided in the pa package to analyze
a single period portfolio based on the Brinson model.

> data(jan)

> br.single <- brinson(x = jan, date.var = "date",

+ cat.var = "sector",

+ bench.weight = "benchmark",

+ portfolio.weight = "portfolio",

+ ret.var = "return")

The data frame, jan, contains all the information necessary to conduct a
single-period Brinson analysis. date.var, cat.var, and return identify the
columns containing the date, the factor to be analyzed, and the return variable,
respectively. bench.weight and portfolio.weight specify the name of the
benchmark weight column and that of the portfolio weight column in the data
frame.

Calling summary on the resulting object br.single of class brinson reports
essential information about the input portfolio (including the number of secu-
rities in the portfolio and the benchmark as well as sector exposures) and the
results of the Brinson analysis.
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> summary(br.single)

Period: 2010-01-01

Methodology: Brinson

Securities in the portfolio: 200

Securities in the benchmark: 1000

Exposures

Portfolio Benchmark Diff

Energy 0.085 0.2782 -0.19319

Materials 0.070 0.0277 0.04230

Industrials 0.045 0.0330 0.01201

ConDiscre 0.050 0.0188 0.03124

ConStaples 0.030 0.0148 0.01518

HealthCare 0.015 0.0608 -0.04576

Financials 0.370 0.2979 0.07215

InfoTech 0.005 0.0129 -0.00787

TeleSvcs 0.300 0.1921 0.10792

Utilities 0.030 0.0640 -0.03399

Returns

$`Attribution by category in bps`

Allocation Selection Interaction

Energy 110.934 -37.52 26.059

Materials -41.534 0.48 0.734

Industrials 0.361 1.30 0.473

ConDiscre -28.688 -4.23 -7.044

ConStaples 5.467 -3.59 -3.673

HealthCare -6.692 -4.07 3.063

Financials -43.998 70.13 16.988

InfoTech -3.255 -5.32 3.255

TeleSvcs -23.106 41.55 23.348

Utilities 16.544 83.03 -44.108

Total -13.966 141.77 19.095

$Aggregate

2010-01-01

Allocation Effect -0.00140

Selection Effect 0.01418

Interaction Effect 0.00191

Active Return 0.01469

The br.single summary shows that the active return of the portfolio, in
January, 2010 was 1.47%. This return can be decomposed into allocation e�ect
(-0.14%), selection e�ect (1.42%), and interaction e�ect (0.19%).

Figure 1 is a visual representation of the return of both the portfolio and the
benchmark sector by sector in January, 2010. This plot shows that in absolute
terms, Utilities performed the best with a gain of more than 5% and Consumer
Discretionary, the worst performing sector, lost more than 10%. Utilities was
also the sector with the highest active return in the portfolio.
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> plot(br.single, var = "sector", type = "return")

Utilities

TeleSvcs

InfoTech

Financials

HealthCare

ConStaples

ConDiscre

Industrials

Materials

Energy

−0.10 −0.05 0.00 0.05
Return

S
ec

to
r Type

Benchmark

Portfolio

Return −− Portfolio vs. Benchmark

Figure 1: Sector Return.
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3.4 Multi-Period Brinson Model

To obtain Brinson attribution on a multi-period data set, one calculates alloca-
tion, selection and interaction within each period and aggregates them across
time. There are �ve methods for this � arithmetic, geometric, optimized link-
ing by Menchero (2004), linking by Davies and Laker (2001), and linking by
Frongello (2002). We focus on the �rst three methods in this paper. Arithmetic
measure calculates relative performance of a portfolio and its benchmark by a
di�erence; geometric measure does so by a ratio. Arithmetic measure is more
intuitive but a well-known challenge in arithmetic attribution is that active re-
turns do not add up over multiple periods due to geometric compounding.5

Geometric is able to circumvent the adding-up problem. Menchero (2004) dis-
cussed various linking algorithms to connect arithmetic return with geometric
return and argued that the optimized linking algorithm is the best way to link
attribution over time.

Arithmetic Attribution. The arithmetic attribution model calculates ac-
tive return and contributions due to allocation, selection, and interaction in each
period and sums them over multiple periods. The arithmetic active return over
T periods Rarithmetic is expressed as:

Rarithmetic =
T∑

t=1
Ractive

t ,

and Ractive
t is the active return in a single period t.

Geometric Attribution. The geometric attribution is to compound vari-
ous returns over T periods where,

1 +RP =
T∏

t=1
(1 +RP

t ),

1 +RB =
T∏

t=1
(1 +RB

t ),

and RP
t and RB

t are portfolio and benchmark returns in a single period t, re-
spectively. Geometric return Rgeometric is thus the di�erence between Rp and
RB :

Rgeometric = Rp −RB .

Optimized Linking Algorithm. The well-known challenge faced in arith-
metic attribution is that the actual active return over time is not equal to the
arithmetic summation of single-period active returns,

Rgeometric ̸= Rarithmetic,

i.e.,

RP −RB ̸=
T∑

t=1
Ractive

t .

Menchero (2004) proposed an optimized linking coe�cient bopt to link arith-
metic returns of individual periods with geometric returns over time,

5See Bacon (2008) for a complete discussion of the complexity involved.
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Rp −RB =
T∑

t=1
boptt Ractive

t ,

where boptt is the optimized linking coe�cient in a single period t.
The optimized linking coe�cient boptt is the summation of a natural scaling

A and an adjustment at speci�c to a time period t,

boptt = A+ at,

where A is an coe�cient for linking from the single-period to the multi-period
return and at is an adjustment to eliminate residuals6.

Since active return over time RP − RB is a summation of active return in
each period adjusted to the optimized linking algorithm, the following is true:

RP −RB =
T∑

t=1
boptt (Rallocation

t +Rselection
t +Rinteraction

t ),

where Rallocation
t , Rselection

t , and Rinteraction
t represent allocation, selection and

interaction in each period t, respectively.
Within each period t, the adjusted attribution is thus expressed as

R̂allocation
t = boptt Rallocation

t ,

R̂selection
t = boptt Rselection

t ,

and

R̂interaction
t = boptt Rinteraction

t .

Therefore, across T periods, active return Ractive, the di�erence between
portfolio return RP and benchmark return RB , can be written as

Ractive =
T∑

t=1
(R̂allocation

t + R̂selection
t + R̂interaction

t ),

where Ractive = RP −RB .

3.5 Multi-Period Brinson Tools

In practice, analyzing a single-period portfolio is meaningless as portfolio man-
agers and their clients are more interested in the performance of a portfolio
over multiple periods. To apply the Brinson model over time, we can use the
function brinson and input a multi-period data set (for instance, quarter) as
shown below.

> data(quarter)

> br.multi <- brinson(quarter, date.var = "date",

+ cat.var = "sector",

+ bench.weight = "benchmark",

+ portfolio.weight = "portfolio",

+ ret.var = "return")

The object br.multi of class brinsonMulti is an example of a multi-period
Brinson analysis.

6See Menchero (2000) for more information on the optimized linking coe�cients.
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> exposure(br.multi, var = "size")

$Portfolio

2010-01-01 2010-02-01 2010-03-01

Low 0.140 0.140 0.155

2 0.050 0.070 0.045

3 0.175 0.145 0.155

4 0.235 0.245 0.240

High 0.400 0.400 0.405

$Benchmark

2010-01-01 2010-02-01 2010-03-01

Low 0.0681 0.0568 0.0628

2 0.0122 0.0225 0.0170

3 0.1260 0.1375 0.1140

4 0.2520 0.2457 0.2506

High 0.5417 0.5374 0.5557

$Diff

2010-01-01 2010-02-01 2010-03-01

Low 0.0719 0.083157 0.0922

2 0.0378 0.047456 0.0280

3 0.0490 0.007490 0.0410

4 -0.0170 -0.000719 -0.0106

High -0.1417 -0.137385 -0.1507

The exposure method on the class br.multi object shows the exposure of
the portfolio and the benchmark based on a user-de�ned category. Here, it shows
the exposure on size. We can see that the portfolio overweights the benchmark
in the lowest quintile in size and underweights in the highest quintile.

> returns(br.multi, type = "linking")

$Raw

2010-01-01 2010-02-01 2010-03-01

Allocation -0.0014 0.0064 0.0046

Selection 0.0146 0.0178 -0.0152

Interaction 0.0020 -0.0074 -0.0087

Active Return 0.0151 0.0168 -0.0193

$Aggregate

2010-01-01, 2010-03-01

Allocation 0.0095

Selection 0.0173

Interaction -0.0142

Active Return 0.0127

The returns method shows the results of the Brinson analysis applied to the
data from January, 2010 through March, 2010. The optimized linking algorithm
is applied here by setting the type to linking. The �rst portion of the returns
output shows the Brinson attribution in individual periods. The second portion
shows the aggregate attribution results. The portfolio formed by top 200 value
securities in January had an active return of 12.7% over the �rst quarter of
2010. The allocation and the selection e�ects contributed 0.95% and 1.73%
respectively; the interaction e�ect made a loss of 1.42%.
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> plot(br.multi, type = "return")

2010−01−01 2010−02−01 2010−03−01

−0.10 −0.05 0.00 0.05 0.10 −0.10 −0.05 0.00 0.05 0.10 −0.10 −0.05 0.00 0.05 0.10

Utilities

TeleSvcs

InfoTech

Financials

HealthCare

ConStaples

ConDiscre

Industrials

Materials

Energy

Return

S
ec

to
r Type

Benchmark

Portfolio

Return across Periods

Figure 2: Sector Return Across Time.

Figure 2 depicts the returns of both the portfolio and the benchmark of the
allocation e�ect from January, 2010 through March. 2010. This plot shows that
for the portfolio, Utilities performed the best with a gain of more than 5%
in January and February, 2010 but tanked in March, 2010.

4 Regression

4.1 Single-Period Regression Model

One advantage of a regression-based approach is that such analysis allows one
to de�ne their own attribution model by easily incorporating multiple variables
in the regression formula. These variables can be either discrete or continuous.

Suppose a portfolio manager wants to �nd out how much each of the value,
growth, and momentum scores of her holdings contributes to the overall per-
formance of the portfolio. Consider the following linear regression without the
intercept term based on a single-period portfolio of n securities with k di�erent
variables:

rn = Xn,kfk + un

where

� rn is a column vector of length n. Each element in rn represents the return
of a security in the portfolio.

� Xn,k is an n by k matrix. Each row represents k attributes of a security.
There are n securities in the portfolio.

� fk is a column vector of length k. The elements are the estimated coe�-
cients from the regression. Each element represents the factor return of
an attribute.
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� un is a column vector of length n with residuals from the regression.

In the case of this portfolio manager, suppose that she only has three hold-
ings in her portfolio. r3 is thus a 3 by 1 matrix with returns of all her three
holdings. The matrix X3,3 records the score for each of the three factors (value,
growth, and momentum) in each row. f3 contains the estimated coe�cients of
a regression r3 on X3,3.

The active exposure of each of the k variables, Xi, i ∈ k, is expressed as

Xi = wactive′xn,i,

where Xi is the value representing the active exposure of the attribute i in the
portfolio, wactive is a column vector of length n containing the active weight
of every security in the portfolio, and xn,i is a column vector of length n with
attribute i for all securities in the portfolio. Active weight of a security is de�ned
as the di�erence between the portfolio weight of the security and its benchmark
weight.

Using the example mentioned above, the active exposure of the attribute
value, Xvalue is the product of wactive′ (containing active weight of each of the
three holdings) and x3 (containing value scores of the three holdings).

The contribution of a variable i, Ri, is thus the product of the factor returns
for the variable i, fi and the active exposure of the variable i, Xi. That is,

Ri = fiXi.

Continuing the example, the contribution of value is the product of fvalue (the
estimated coe�cient for value from the linear regression) and Xvalue (the active
exposure of value as shown above).

Therefore, the active return of the portfolio Ractive is the sum of contribu-
tions of all k variables and the residual u (a.k.a. the interaction e�ect),

Ractive =
k∑

i=1

Ri + u.

For instance, a hypothetical portfolio has three holdings (A, B, and C), each
of which has two attributes � size and value.

Return Name Size Value Active_Weight

1 0.3 A 1.2 3.0 0.5

2 0.4 B 2.0 2.0 0.1

3 0.5 C 0.8 1.5 -0.6

Following the procedure as mentioned, the factor returns for size and value
are -0.0313 and -0.1250. The active exposure of size is 0.32 and that of value is
0.80. The active return of the portfolio is -11% which can be decomposed into
the contribution of size and that of value based on the regression model. Size
contributes 1% of the negative active return of the portfolio and value causes
the portfolio to lose the other 10.0%.

4.2 Single-Period Regression Tools

Another conventional attribution methodolody is the regression-based analysis.
As mentioned, the pa package provides tools to analyze both single-period and
multi-period data frames.
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> rb.single <- regress(jan, date.var = "date",

+ ret.var = "return",

+ reg.var = c("sector", "growth",

+ "size"),

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> exposure(rb.single, var = "growth")

Portfolio Benchmark Diff

Low 0.305 0.2032 0.1018

2 0.395 0.4225 -0.0275

3 0.095 0.1297 -0.0347

4 0.075 0.1664 -0.0914

High 0.130 0.0783 0.0517

reg.var speci�es the columns containing variables whose contributions are
to be analyzed. Calling exposure with a speci�ed var yields information on
the exposure of both the portfolio and the benchmark by that variable. If var
is a continuous variable, for instance, growth, the exposure will be shown in 5
quantiles. Majority of the high value securities in the portfolio in January have
relatively low growth scores.

> summary(rb.single)

Period: 2010-01-01

Methodology: Regression

Securities in the portfolio: 200

Securities in the benchmark: 1000

Returns

2010-01-01

sector 0.003189

growth 0.000504

size 0.002905

Residual 0.008092

Portfolio Return -0.029064

Benchmark Return -0.043753

Active Return 0.014689

The summary method shows the number of securities in the portfolio and
the benchmark, and the contribution of each input variable according to the
regression-based analysis. In this case, the portfolio made a loss of 2.91% and the
benchmark lost 4.38%. Therefore, the portfolio outperformed the benchmark
by 1.47%. Sector, growth, and size contributed 0.32%, 0.05%, and 0.29%,
respectively.

4.3 Multi-Period Regression Model

The same challenge of linking arithmetic and geometric returns is present in
multi-period regression model. We apply the optimized linking algorithm pro-
posed by Menchero (2000) in the regression attribution as well.

Within each period t,

Ractive
t =

k∑
i=1

Ri,t + ut,
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where Ri,t represents the contribution of a variable i of the time period t and
ut is the residual in that period.

Across T periods, the active return can be expressed by a product of the
optimized linking coe�cient boptt and the individual contribution of each of the
k attributes. The adjusted contribution of each of the k variables i, R̂i,t, is
expressed by

R̂i,t = boptt Ri,t.

Thus, the overall active return Ractive can be decomposed into

Ractive =
T∑

t=1

k∑
i=1

R̂i,t + U ,

where U is the residual across T periods.

4.4 Multi-Period Regression Tools

> rb.multi <- regress(quarter, date.var = "date",

+ ret.var = "return",

+ reg.var = c("sector", "growth",

+ "size"),

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> rb.multi

Period starts: 2010-01-01

Period ends: 2010-03-01

Methodology: Regression

Securities in the portfolio: 200

Securities in the benchmark: 1000

Regression-based analysis can be applied to a multi-period data frame by
calling the same method regress. By typing the name of the class object
rb.multi directly, a short summary of the analysis is provided, showing the
starting and ending period of the analysis, the methodology, and the average
number of securities in both the portfolio and the benchmark.

> summary(rb.multi)

Period starts: 2010-01-01

Period ends: 2010-03-01

Methodology: Regression

Avg securities in the portfolio: 200

Avg securities in the benchmark: 1000

Returns

$Raw

2010-01-01 2010-02-01 2010-03-01

sector 0.0032 0.0031 0.0002

growth 0.0005 0.0009 -0.0001

size 0.0029 0.0295 0.0105

Residual 0.0081 -0.0172 -0.0302

Portfolio Return -0.0291 0.0192 0.0298
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Benchmark Return -0.0438 0.0029 0.0494

Active Return 0.0147 0.0163 -0.0196

$Aggregate

2010-01-01, 2010-03-01

sector 0.0065

growth 0.0013

size 0.0433

Residual -0.0392

Portfolio Return 0.0190

Benchmark Return 0.0064

Active Return 0.0127

The regression-based summary shows that the contribution of each input
variable in addition to the basic information on the portfolio. The summary
suggests that the active return of the portfolio in year 2010 is 1.27%. The
Residual number indicates the contribution of the interaction among various
variables including sector, growth, and growth.

Visual representation of relative performance of a portfolio against its bench-
mark is best viewed across a longer time span. Here, we use the data frame year
for illustrative purposes.

> rb.multi2 <- regress(year, date.var = "date",

+ ret.var = "return",

+ reg.var = c("sector", "growth",

+ "size"),

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> returns(rb.multi2, type = "linking")

$Raw

2010-01-01 2010-02-01 2010-03-01

sector 0.0035 0.0034 0.0002

growth 0.0005 0.0010 -0.0001

size 0.0031 0.0320 0.0109

Residual 0.0088 -0.0187 -0.0312

Active Return 0.0159 0.0177 -0.0203

2010-04-01 2010-05-01 2010-06-01

sector 0.0017 0.0044 0.0077

growth 0.0001 0.0002 0.0004

size 0.0145 0.0041 0.0020

Residual -0.0043 0.0346 0.0201

Active Return 0.0122 0.0433 0.0304

2010-07-01 2010-08-01 2010-09-01

sector 0.0016 0.0051 -0.0023

growth -0.0005 0.0005 -0.0006

size 0.0066 0.0000 0.0100

Residual -0.0333 0.0189 -0.0229

Active Return -0.0256 0.0246 -0.0158

2010-10-01 2010-11-01 2010-12-01

sector 0.0016 -0.0048 -0.0084

growth -0.0011 -0.0004 0.0010

size 0.0024 0.0143 0.0057

Residual 0.0149 0.0192 -0.0253
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> plot(rb.multi2, var = "sector", type = "return")
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Figure 3: Performance Attribution.

Active Return 0.0179 0.0282 -0.0270

$Aggregate

2010-01-01, 2010-12-01

sector 0.0137

growth 0.0011

size 0.1056

Residual -0.0193

Active Return 0.1014

We obtained an object rb.multi2 of class regressMulti based on the data set
from January, 2010 through December, 2010. The portfolio beat the benchmark
by 10.1% over this period. Based on the regression model, size contributed to
the lion share of the active return.

Figure 3 displays both the cumulative portfolio and benchmark returns from
January, 2010 through December, 2010. It suggests that the portfolio, consisted
of high value securities in January, consistently outperformed the benchmark
in 2010. Outperformance in May and June helped the overall positive active
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return in 2010 to a large extent.

5 Brinson as Regression

Another way to think about the analysis as Brinson et al. (1986) have done
is to consider it in the context of a regression model. Conducting a Brinson
attribution is similar to running a linear regression without the intercept term.
Estimated coe�cients will then be the mean return of each category of the
attributed speci�ed in the universe, a.k.a. the factor return of each category.
The mean return of each category also appears in the Brinson analysis. The
equivalent to the allocation e�ect for the universe in the Brinson model is the
sum of the product of the estimated coe�cient and the active weight of each
category.

Using the same regression model as before,

Rallocation =

N∑
j=1

WP
j RB

j −
N∑
j=1

WB
j RB

j

= (WP −WB)′f ,

where WP is a column vector indicating the portfolio weight of each category
within the attributed speci�ed by the manager; WB , a column vector indicating
the benchmark weight of each category, and f is the column vector which has
benchmark return of all the categories. Assuming that in this case, the bench-
mark is the universe and the portfolio holdings are all from the benchmark, RB

can be estimated by regressing returns on the attribute speci�ed by the portfolio
manager:

rn = Xn,pf +U,

where

� rn is a column vector of length n. Each element in rn represents the return
of a security in the portfolio.

� Xn,p is an n by p matrix where n refers to the number of securities in the
portfolio and p refers to the number of levels within the attribute speci�ed.

� f is the estimated coe�cients on the regression without the intercept term.
The estimated coe�cient of each attribute is the mean return for each of
the attribute.

� U is the column vector with all the residual terms.

Since RB is the same as f , the allocation e�ect in the Brinson model is a
special case of the regression approach.

In order to estimate the selection e�ect in the Brinson model, one can cal-
culate the mean return of each category within the attribute in both the port-
folio and the benchmark under a regression framework and use the benchmark
weights to calculate the selection e�ect.
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Rselection =

N∑
j=1

WB
j RP

j −
N∑
j=1

WB
j RB

j

= WB′(fP − fB),

where WB is the column vector with the benchmark weight of each category
within the attribute speci�ed; fP and fB are the column vectors indicating
the mean return of the portfolio and that of the benchmark, respectively. As
mentioned above, fP and fB can be estimated by running a linear regression
without the intercept term with respect to stocks in the portfolio and benchmark
separately. Hence, the selection e�ect in the Brinson model can be calculated
by using linear regression.

Interaction e�ect is the di�erence between a portfolio's actual return and
the sum of the allocation and selection e�ects.

An numerical example of showing that the Brinson model is a special case
of the regression approach is as follows.

Suppose that an equity portfolio manager has a portfolio named test with
the universe as the benchmark.

> data(test)

> test.br <- brinson(x = test, date.var = "date",

+ cat.var = "sector",

+ bench.weight = "benchmark",

+ portfolio.weight = "portfolio",

+ ret.var = "return")

> returns(test.br)

$`Attribution by category in bps`

Allocation Selection Interaction

Energy -10.4405 6.01 1.7761

Materials 4.6486 -1.59 0.1544

Industrials 1.7606 -19.03 -1.5726

ConDiscre -1.0970 -13.47 2.2158

ConStaples 0.1907 -16.79 2.1560

HealthCare 0.0861 19.69 0.6350

Financials 0.0908 8.35 -0.0116

InfoTech 0.5057 -32.40 -1.9313

TeleSvcs -1.7611 15.52 3.0745

Utilities 2.6190 -8.81 3.5853

Total -3.3971 -42.54 10.0816

$Aggregate

2010-01-01

Allocation Effect -0.00034

Selection Effect -0.00425

Interaction Effect 0.00101

Active Return -0.00359

When we apply the standard single-period Brinson anaysis, we obtain an
active return of -35.9 bps which can be further decomposed into allocation (-3.4
bps), selection (-42.5 bps), and interaction (10.1 bps).
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We can also show the allocation e�ect by running a regression model based
on sector only.

> test.reg <- regress(x =test,

+ date.var = "date",

+ ret.var = "return",

+ reg.var = "sector",

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> returns(test.reg)

2010-01-01

sector -0.00034

Residual -0.00325

Portfolio Return -0.01621

Benchmark Return -0.01263

Active Return -0.00359

The contribution from sector based on the regression approach (-3.4 bps)
matches the allocation e�ect from the Brinson model as shown above.

However, in order to calculate the selection e�ect from the regression ap-
proach, we need to apply another regression model to a universe limited to
the securities held in the portfolio. Using the factor returns from the regress
class object, test.reg, and those from the linear regression, we can obtain the
selection e�ect (-42.5 bps) via the regression approach.

> lm.test <- lm(return ~ sector - 1,

+ data = test[test$portfolio != 0, ])

> lm.test$coefficients

sectorEnergy sectorMaterials

-0.03561 -0.05146

sectorIndustrials sectorConDiscre

0.00194 -0.00533

sectorConStaples sectorHealthCare

-0.02514 0.04327

sectorFinancials sectorInfoTech

-0.02376 -0.02376

sectorTeleSvcs sectorUtilities

0.00916 -0.03878

> exposure(br.single, var = "sector")[ ,2] %*%

+ (lm.test$coefficients - test.reg@coefficients)

[,1]

[1,] 0.00653

6 Conclusion

In this paper, we describe two widely-used methods for performance attribution
� the Brinson model and the regression-based approach, and provide a simple
collection of tools to implement these two methods in R with the pa package.
We also show that the Brinson model is a special case of the regression method.
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A comprehensive package, portfolio Enos and Kane (2006), provides facilities
to calculate exposures and returns for equity portfolios. It is possible to use
the pa package based on the output from the portfolio package. Further, the
�exibility of R itself allows users to extend and modify these packages to suit
their own needs and/or execute their preferred attribution methodology. Before
reaching that level of complexity, however, pa provides a good starting point for
basic performance attribution.
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